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The results of earlier studies of diatomic forces and force constants are used to formulate force 
constraints. It is proposed that such constrained variations should improve force constant calculations. 

Mittels frfiherer Ergebnisse f/fir Bindungskr~ifte bei zweiatomigen Molekfilen werden Neben- 
bedingungen fiir die Wellenfunktion formuliert. Es ist anzunehmen, dab dies zu einer Verbesserung 
der Berechnung ffir die entsprechenden Kraftkonstanten ffihrt. 

Les r6sultats d'6tudes ant6rieures des forces et des constantes de force diatomiques sont utilis6s 
pour formuler des contraintes de force. De telles variations contraintes devraient am61iorer les calculs 
de constante de force. 

1. Introduction 

On one hand, the subject of diatomic forces and force constants has been 
extensively studied by various workers [1-3] .  On the other hand, the method of 
constrained variations has been well developed [4-12].  The object of this paper 
is to formulate a variety of constraints which can be imposed on electronic wave- 
functions in order to improve force constant calculations. 

No attempt is made in this paper to review the literature on diatomic forces 
and force constants or on the closely related virial and electrostatic theorems. 
Instead, we make use of the results of Salem [1], Benston and Kirtman [21, and 
Benston [3], and recast them in operator form suitable for use in constrained 
variations. 

Let U(R) represent the potential energy for the motion of the nuclei as a function 
of the internuclear distance R. A priori determination of force constants 1 involves 
calculation of(a) three points on the U curve, (b) two points on the dU/dR curve, 
or (c) one point on the dZU/dR 2 curve, namely at the equilibrium separation R e. 

2. Energy 

The most common practice by far is to use method (a), although method (c) has 
sometimes been chosen [1, 2]. 

Following previous workers, we use the (adiabatic) Born-Oppenheimer 
approximation and consider a spinless Hamiltonian 

H --- T +  V, (2.1) 

1 The term "force constant" in this paper implies the quadratic force constant. Computation of 
cubic force constants would require an additional point in each case. 
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where T = - 1/2 ~ V~, (2.2) 
i 

V : ZAZB/R - ~ [(ZA/rIA ) + (ZB/r~B)] + ~ r~7 ~ , (2,31 
i i < j  

and the symbols have the usual meanings. Atomic units are used throughout: ao 
for lengths, e2/ao for energies, e2/a 2 for forces, and eE/a 3 for force constants. In the 
coordinate system adopted in this paper, the diatomic molecule AB lies on the 
z-axis with z(B) - z(A) = R. The angle 0iA is ~ iAB and 0 m is the supplement of 
~iBA. 

In the Born-Oppenheimer approximation, the energy E of the electronic wave- 
function is determined from the Hamiltonian of Eq. (2.1) as a function of R; E(R) 
is then considered as U(R). Method (a), therefore, involves fitting the calculated 
E(R) to a polynomial in R. The worker optimistically assumes that the fitted curve 
is parallel to the exact potential. This basic assumption has little theoretical basis 
and is, in fact, invalid when the dissociation limit is not proper, as in the case of 
many self-consistent field wavefunctions. We feel that method (a) is, therefore, 
poor, except perhaps with very accurate wavefunctions. 

Since we cannot find explicit theoretical constraints to force the calculated 
energy curve to be parallel to the exact potential, this approach will not be con- 
sidered further in this paper. 

3. Diatomic Forces 

Following Benston and Kirtman [2], we write the energy of the electronic 
wavefunction as 

E : <~Lm~>, (3.1) 

where P is assumed to be normalized. Then, 

dE/dR = <~pl(~H/OR)q]~> + 2<((91p/c3e)ql(H -- E)[~p>, (3.2) 

where q represents an arbitrary set of electronic coordinates. If 

<(&p/~R)oI(H - E)t~p > : O, (3.3) 

then dE~dR = <tplF~l/p), (3.4) 

where Fq has been used to replace (OH/OR)q and represents the attractive force 
operator. Eq. (3.4) is the well-known generalized Hellmann-Feynman theorem, 
and is obviously satisfied by exact wavefunctions. For  approximate wavefunctions, 
the condition expressed in Eq. (3.3) poses no difficulties in principle, since an 
approximate wavefunction can be made to satisfy the condition by phase variations 
[12, 13] or by constrained variations [4-7]. 

Benston and Kirtman [2] studied two sets of q. One set of electronic co- 
ordinates, which preserves the angles 0iA and 0iB, is called scaled electron co- 
ordinates and denoted by a subscript s. Their result can be written as 

F~ : - (2T + V)/R,  (3.5) 

which is just the operator appearing in the familiar virial theorem for diatomic 
molecules. 

Another set, which they called fixed electron coordinates and denoted by a 
subscript f ,  preserves the electronic coordinates measured along space-fixed axes. 
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However, since the origin of the space-fixed axes is arbitrary, the operator Ff can 
take on several forms. From the results of Salem [1], one can readily get 

F A = - ZAZB/R  2 - Z~ ~ cos OiB/r{B, (3.6) 
i 

FR = -- ZAZB/R  2 + ZA ~ cos OiA/r2A, (3.7) 
i 

1 (F  A q_ FB ) (3.8) 
G,-- 5- 

where FA, F~ and FM are the various forms of Fy when nucleus A, B, and the mid- 
point of AB are held fixed respectively. The operator F A is the operator for the 
attractive force on nucleus B; and F R, that on A. Benston and Kirtman [2] placed 
the origin at the center of mass and their result can be rewritten as 

Fc = #FA + (1 -- #)FB, (3.9) 

where /z = MB/(M A + MB),  (3.10) 

and M A and M~ are the atomic masses. 
In a later paper, Benston [3] considered still another set of electronic co- 

ordinates, denoted by a subscript z. It represents the space-fixed x, y, and z' = z /R  
coordinates of the electron. She obtained 

F~ : - Z A Z , / R  2 + R - l [ ~  ~2/~z2 i 
L i  

+ 2 (ZA C~ + Z .  cos 2 Ore~riB ) -- ~. (z i -- zd)2/r3]. (3.11) 
i i< j  

Thus, we see that there are at least six ways of calculating diatomic forces. With 
approximate wavefunctions, different forms of the force operator generally lead to 
different numerical results 2. This undesirable ambiguity is reminiscent of the 
analogous situation in the case of oscillator strengths, where the ambiguity can be 
removed by constrained variations I-8, 9]. When we use method (b) to calculate 
force constants, we hope to get good values for the forces. Hence, we propose the 
use of constrained variations [4-7]  in order to eliminate the ambiguity mentioned 
above and to obtain hopefully better values for diatomic forces. The constraint 
operators are simply 

Fpq = Fp - Fq, (3.12) 

where p and q can be any pair among s, A, B, M, C, and z. It should be noted that 
the constraint <FAB ) = 0 would make 

<FA> = (Fs> = <Flu> = (Fc> (3.13) 

and is a natural one to use for heteronuclear diatomic molecules. Another con- 
straint one can easily impose is <FsA > = 0. The solution of the resulting con- 
strained secular equation by perturbation [4-6]  or by parametrization [5] has 
been shown to be straightforward. 

4. Diatomic Force Constants 

The diatomic force constant can be expressed in terms of an operator 

k = (d2E/dRZ)Ro = <vIK[V>Ro. 

2 For homonuclear diatomic molecules, <FA) = <F~> = <FM> = <Fc> automatically. 

(4.1) 
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Differentiating Eq. (3.2), one gets 3 

Kqq, = (~2H/~R2)qr + 2(Fq - <Fq))(~/~R)r (4.2) 

if Eq. (3.3) holds or if the weaker condition: 

(d/dR) < (&p/~ R)qI(H -E)[~v) = 0 (4.3) 

is satisfied. It should be noted that, if R e is determined by the energy curve ,  <Fq) 
may not be zero even at R e but can be made to vanish by constrained variations 
[4-7]. 

Because there are so many sets of q, one has even more different forms of the 
operator Koq,. Some 4 of these can be obtained from the results of Salem [1] and 
Benston and Kirtman [2]; some are unpublished; and the rest are yet to be 
derived, 

It is obviously undesirable to obtain different values for the same quantity k 
when different forms of Kqq, a r e  used. Again, this ambiguity can be removed by 
means of constrained variations. The constraint operators, in this case, are 

Kpv,~q, = Kpv, - Kqr (4.4) 

5. Discussions 

The early papers [4-7]  on constrained variation were concerned with the 
method: that is, the formulation of the constrained variation principle and the 
solution of the constrained secular equation. The purpose of constrained variations 
has been found in recent studies [8-11].  The present paper adds to the latter. We 
feel that the method of constrained variations has finally come of age. 

Both the force constraints and force constant constraints are expected to 
improve force constant calculations. In principle, none of the necessary integrals 
involved should be insurmountably difficult for diatomic molecules. Both the 
transformation to elliptical coordinates and numerical quadrature, where neces- 
sary, have been well worked out. In practice, force constraints, except those in- 
volving Fz, are much easier to impose. 

The idea of force constraints is not new. We have applied the constraint 
<FAB ) = 0 to the lithium hydride molecule [6], but only at the theoretical R e. We 
plan to apply force constraints to force constant calculations in the near future. 
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